To date, Pythagoras theorem is arguably the sole primary theorem in all mathematical genres. Even though it has geometric origins, the theory generally ascribed to Pythagoras has been applied in almost all platforms of science disciplines. Numerous proofs have been developed in concurrence and affirmation of the original seminal Pythagorean theorems; some of these verifications were discovered by the most unpredictable persons in utter simplicity, including the twelve-year-old lad (Albert Einstein), an American president among others.
Although, currently we best know the theorem in its algebraic notation, a2 +b2 = c2 – where from we can determine magnitude of one side of a right angled triangle given the other two, Pythagoras visualized it with a geometric perspective in which he related the areas of the resultant squares generated by the sides of a right angled triangle. It was only the convenient tool of algebra, brought to the fore around 1600 CE that has bequeathed us with this simplified algebraic version of Pythagoras theorem (Maor, 2007, p. 22). The elementary components of the theory are believed to have been discovered and utilized by the ancient Babylonians, and probably the Chinese approximately 1000 years before Pythagoras proved the theorem in about 500 BC. Old Babylonian tablets dating back to roughly 1800 -1600 BC, were unearthed whose inscriptions upon close scrutiny revealed a list of Pythagorean triples (that is, positive integers a, b and c such that a2 + b2 = c2) for example (3, 4, 5) and (4800, 4601, 6649). A good example of these Babylonian tablets is the Plimpton 322 collection at Columbia University. The mechanism employed by the Babylonians to arrive at these large Pythagorean triples is yet to be established, though Euclid’s algorithmic analysis formulated 1,500 years later concretized the Babylonian findings. Euclid considered a set of two positive integers, say u and v, where u > v; and did show that the three Pythagorean triples a, b and c can be deduced as;
a = 2uv, b = u2 – v2 and c = u2 + v2
It follows then that;
a2 + b2 = (2uv)2 + (u2 – v2)2
=4u2v2 + u4 – 2u2v2 + v4
=u4Â + 2u2v2Â + v4
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more